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A simple approach based on six transfer cells and simulated annealing algorithm for analyzing and tailoring
the spectra of arbitrary microring resonator arrays is presented. Coupling coefficients, ring sizes, and
waveguide lengths of microring resonator arrays can be arbitrary in this approach. After developing
this approach, several examples are demonstrated and optimized for various configurations of microring
resonator arrays. Simulation results show that this approach is intuitive, efficient, and intelligent for
applications based on microring resonator arrays.
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The single microring resonator has attracted lots of at-
tentions on analysis, design, simulation, and fabrica-
tion, due to its unique merits such as high Q factor
and free of facets for feedbacks[1−5]. Thus it is one of
the most promising building blocks for future large-scale
integrated optics. Various applications of the single mi-
croring resonator have been demonstrated in the fields
such as optical filters, switches, modulators, sensors, and
so on[6−9]. As the inherent limitation of the single mi-
croring resonator, the developing trend of this area is
from a single microring resonator to multiple or array
forms of microring resonators. There are already some
demonstrations of series and parallel cascaded micror-
ing resonators[10,11]. Considerable attentions are paid
to microring resonator arrays (MRAs) due to their im-
provements of spectra compared with a single microring
resonator[12−14]. An analytical model for MRAs has been
presented using Sylvester’s theorem[12]. However, sim-
plifying assumptions such as identical and lossless rings
and identical coupling coefficients are adopted, which are
not comprehensive for the analysis of practical MRAs.
Furthermore, coupling coefficients are critical for spec-
tral shapes. Generally, the coupling coefficients are not
identical to tailor a specified spectrum. The simulated
annealing algorithm[15] is a heuristic method that math-
ematically mirrors the cooling of a material to a state
of minimum energy, which is suitable for optimization
problems with multiple parameters. Previously it has
been used for the optimization of pulse generations in
MRAs[13], while the optimization of spectra has not been
studied.

In this letter, we develop an approach based on six
transfer cells and simulated annealing algorithm for an-
alyzing and tailoring the spectra of MRAs. Six transfer
cells are similar to our previous work[14]. However, the
lengths of upper and lower waveguides here are mod-
ified to be different, which is the most general model

for MRAs so far. The proposed approach is suitable
for MRAs with arbitrary coupling coefficients, ring sizes,
and waveguide lengths. Combined with the simulated an-
nealing algorithm, a specified spectrum can be tailored
with the maximal similarity by optimizing the coupling
coefficients. After introducing the model and flow chart,
we carry out some simulations as examples with various
configurations of MRAs.

Figure 1(a) shows an M × N MRA with M rows and
N columns, which is formed by N times parallel connec-
tions of M -series coupled microring resonators through
lower and upper waveguides. The drop of the MRA ap-
pears at different sides depending on the parity of M , as
shown in Fig. 1(a). Using a natural number coordinate
system n − m, the microring resonator located at the
mth row and the nth column can be denoted as MR(n,
m). When the input is fixed at the left side of MR(N , 1),
the elements of the MRA can be generally grouped into
six classes, corresponding to couplers, ring resonators,
and waveguides with two types due to different optical

Fig. 1. (a) Schematic diagram of a MRA and detailed repre-
sentation of the microring resonator at the mth row and the
nth column. (b) Six transfer cells for the MRA and corre-
sponding complex optical fields.
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cycling directions, respectively, as shown in Fig. 1(b).
Following the transfer matrix formalisms, we adopt

the six transfer cells to analyze MRAs. Com-
plex optical fields in these six cells are denoted
as E1, E2, E3, and E4. Then the transfer ma-
trix can be represented as (E2; E4) = Θ (E1; E3).
The corresponding set can be denoted as Θ =
{

Θ|Θ ∈ {Θc, Θ̃c, Θr, Θ̃r, Θl, Θll}
}

, while these six cells

can be expressed as Θc(k) = (i/k) (t,−1; 1,−t),Θ̃c(k) =

(−i/k) (t,−1; 1,−t),Θr(p) =
(

p, 0; 0, p−1
)

, Θ̃r(p) =
(

p−1, 0; 0, p
)

,Θl(l1, l2) =
(

l−1
2 , 0; 0, l1

)

, and Θll(l1, l2) =

(l2, 0; 0, l1). Here, Θc and Θ̃c are wavelength indepen-
dent, while the other four cells are wavelength dependent.
t and k are the transmission and coupling coefficients,
respectively, and k2 + t2 = 1 when the coupling pro-
cess is lossless. The distances between lower and up-
per adjacent columns are L1 and L2, respectively, and
the radius of resonator is R. The complex optical field
change coefficients of the half round-trip resonator, the
lower and upper waveguides are given by p = exp(iγrπR),
l1 = exp(iγlL1), and l2 = exp(iγlL2), respectively, where
γr = β+iαr and γl = β+iαl are the complex propagation
constants of ring resonators and straight waveguides, re-
spectively; β = 2πneff/λ is the real part of complex prop-
agation constants for both ring resonators and straight
waveguides, neff is the effective index, and λ is the wave-
length; αr and αl are amplitude attenuation coefficients
for ring resonators and waveguides, respectively.

Figure 1(a) also shows the details of MR(n, m) , which
can be generally decomposed into three subsections of
two couplers and a ring resonator with transfer matrices
Cn,m, Cn,m+1, and Qn,m, respectively. The transmission
coefficient tn,m, the coupling coefficient kn,m, and the
resonator radius Rn,m are not required to be identical
for each resonator in our proposed approach. The com-
plex optical field change coefficient of the half round-trip
resonator is given by pn,m = exp(iγrπRn,m). The trans-
fer matrices of the components of MR(n, m) are given
by

Cn,m =

{

Θc(kn,m)

Θ̃c(kn,m)
for
for

m
m

=
=

odd
even

, (1a)

Qn,m =

{

Θr(pn,m)

Θ̃r(pn,m)
for
for

m
m

=
=

odd
even

. (1b)

After the processes of decompositions and syntheses,
the longitudinal transfer matrix of the nth column is

written as Gn =

(

M
∏

m=1
Cn,mQn,m

)

Cn,M+1. Then we

can obtain the transverse transfer matrix of the nth col-
umn as

Un =
(

−Gn,11, 1; (−1)M , Gn,22

)

/Gn,12. (2)

The transfer matrices of waveguides between the nth
and (n−1)th columns with the lower and upper lengths
L1,n−1 and L2,n−1 are expressed as

Vn−1 =

{

Θl(l1,n−1, l2,n−1)
Θll(l1,n−1, l2,n−1)

for
for

M
M

=
=

odd
even

, (3)

where l1,n−1 = exp(iγlL1,n−1) and l2,n−1 =
exp(iγlL2,n−1) denote the complex optical field change
coefficients of the lower and upper waveguides, respec-
tively. If n=1, we adopt L1,0 = L2,0 = 0, and hence
l1,0 = l2,0 = 1 and V0 = (1, 0; 0, 1) for convenience.

Finally, the total transfer matrix of the MRA can be

obtained as P =
N
∏

n=1
Vn−1Un. Normalized complex trans-

fer functions at the through port ζT and at the drop port
ζD can be expressed as

(ζT; ζD) =

{

(|P | ;−P12) /P11

(P22; P12)
for
for

M
M

=
=

odd
even

.

(4)
Corresponding transmission spectra are given as T =

|ζT|
2

and D = |ζD|
2
. When there is no loss, the sum

of T and D equals unit due to the energy conservation,
meaning that their spectra are complementary. In the
following, only the spectra at the drop port are chosen
to be studied for simplicity.

The above model can be used for analyzing an arbi-
trary MRA under given coupling coefficients, ring sizes,
and waveguide lengths. For further tailoring the spectra,
the coupling coefficients are required to be optimized for
a given configuration. We denote the coupling coefficient
matrix as

K =







k1,1 · · · k1,M+1

...
. . .

...
kN,1 · · · kN,M+1






. (5)

In the simulation, the spectrum is discrete and W is
the sampling number for a specified wavelength range.
The target spectrum is denoted as Dtarget, and then the
cost function E of the spectrum D is defined as

E =
W
∑

j=1

∣

∣Dj − Dtarget
j

∣

∣. (6)

The temperature of the cooling process is denoted
as Tp. Figure 2 presents the flow chart of the simu-
lated annealing algorithm for optimizing the coupling
coefficients. At the beginning, a guess of K is given.
Then a disturbed matrix K ′ is sent to calculate the
change of the cost function δE = E(K ′) − E(K). Us-
ing the classical simulated annealing algorithm[15], the
temperature decreases after some iterative times at each
temperature. The simulated annealing process is finished
when the temperature decreases to the final temperature.
During the process of cooling, we label three states 1, 0,
and −1 to monitor the acceptance and rejection states,
as shown in Fig. 2. They represent that the new value
K ′ is accepted with a smaller cost function, rejected
and accepted by a probability exp(−δE/Tp), respec-
tively. Finally, the optimized coupling coefficient matrix
is obtained. The optimization results may be multiple
solutions due to the inherent principle of this algorithm.

Using the proposed approach, we calculate the trans-
mission spectra of five configurations with different M
and N , as shown in Fig. 3(a). Parameters are chosen
as Rn,m = R1,1 = 10 µm, kn,m = k1,1 = 0.5, L1,n =
L2,n = πR1,1, neff = 1.5, and αl = αr = 0. Various
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Fig. 2. Flow chart of the simulated annealing algorithm for
tailoring the spectrum. Labels 1, 0, and −1 represent different
acceptance and rejection states of the disturbed value during
the cooling process.

Fig. 3. Spectra of (a) MRAs with different rows and columns
and (b) a MRA with different coupling coefficients, ring sizes,
and waveguide lengths. Inset shows the schematic diagram
of a 3×2 MRA.

Fig. 4. Validation of the simulated annealing algorithm using
a 2×2 MRA. (a) Target and simulated spectra. (b) Coupling
coefficients k11 and kN,M+1, (c) cost function, and (d) accep-
tance and rejection states during the cooling process.

transmission spectra of these configurations are caused
by different constructive and destructive interference

pathways. And these spectra can find different appli-
cations based on their shapes. The sharp transmission
shape can be used as high-sensitivity sensors such as
the MRA of M = N = 2, while the flat transmis-
sion with a high ratio roll-off can be used as band-
pass filters such as the MRA of M = 3 and N = 2.
Figure 3(b) shows the transmission spectrum of a 3×2
MRA with different coupling coefficients, ring sizes, and
straight waveguides. Parameters are adopted as coupling
coefficients K = [0.50 0.55 0.60 0.65; 0.50 0.55 0.60 0.65],
ring size R1:2,1:3 = [10 20 30; 10 20 30] (µm), waveguide
lengths L1:2,1 = π [10; 20] (µm), and other parameters
the same as those in Fig. 3(a). As shown in Fig. 3(b),
three wavelength transmission spectra can be obtained
near 1.545 µm. Thus this configuration can be used for
multi-wavelength-based applications. By optimizing the
coupling coefficients and increasing the numbers of rows
and columns, both ripples in the passband and lobes in
the out-of-band of the spectra can be suppressed[12,14].

We then turn to tailor the spectra using the simulated
annealing algorithm. The initial and final temperatures
are set to be 1 and 0.59 respectively, with the expo-
nential decreasing factor as 0.5. At each temperature,
we choose the iterative times per temperature as 1000,
which can be modified under different cases by moni-
toring the cooling process. The initial guess is that all
the coupling coefficients are set to be 0.5. Generally, the
cooling process is performed by 20 times and the best re-
sult is chosen from those local optimized results. Firstly,
we present a validation of this algorithm. A 2×2 MRA
is chosen with a randomly generated coupling coefficient
matrix Ktarget = [0.32 0.78 0.57; 0.45 0.76 0.82]. Other
parameters are the same as those of Fig. 3(a). After the
simulated annealing algorithm is finished, the simulated
result is K = [0.32 0.78 0.57; 0.45 0.76 0.82], which is the
same as Ktarget. Simulation results are shown in Fig. 4.
The solid line in Fig. 4(a) is the target spectrum while
the circle-marker line is the simulated spectrum after the
cooling process. There is a good agreement between these
two curves. Figure 4(b) shows two coupling coefficients
k11 and kN,M+1 during the cooling process. The coupling
coefficients approach to be stable after the temperature
decreases 5 times. Figure 4(c) shows the cost function
during the cooling process, which is initially as high as
14.44 and finally as low as 2.73×10−14. This suggests
a high match degree of the target and simulated spec-
tra. The acceptance and rejection states are shown in
Fig. 4(d). At the beginning, all the three states for the
cooling process have high possibilities, because either the
cost function is high or the possibility of acceptance is
high, which corresponds to a high unmatched degree of
coupling coefficients. After the cooling is nearly finished,
the state 0 has more possibility until the state does not
change.

Then a specified shape filter is designed using the sim-
ulated annealing algorithm. The 2×3 MRA is chosen to
design three kinds of filters with the spectra as [1 0 0 0],
[0 1 0 0], and [0 0 1 0] like in the wavelength range from
1545 to 1550 nm. The initial guess is that all the coupling
coefficients are set as 0.5. The corresponding spectrum is
shown in Fig. 5(a), which shows two zero transmissions
in the passband. This can be contributed to the feedfor-
ward effects combined with the mode splittings. Figures
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Fig. 5. (a) Spectrum under initially identical coupling
coefficients as 0.5, and simulated results for (b) [1 0 0 0],
(c) [0 1 0 0], and (d) [0 0 1 0] like target spectra for the
configuration of 2×3 MRA.

5(b)−(d) are simulation results for [1 0 0 0], [0 1 0 0],
and [0 0 1 0] like spectra. And the optimized coupling
coefficients are shown in the boxes on the right. The cost
functions are 1.70, 8.18, and 9.14 respectively and hence
the unmatched degree increases as the passband of the
target spectrum shifts away from 1545 nm.

In conclusion, we have proposed an approach based on
six transfer cells and simulated annealing algorithm for
the analysis and optimization of MRAs with arbitrary
coupling coefficients and ring sizes. After developing the
model of six transfer cells and the flow chart of the simu-

lated annealing, several configurations are demonstrated.
Due to its intuitive, fast, and intelligent calculations, this
approach can be used to simulate and design MRAs with
various transmission spectra for different filtering and
sensing applications.
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